THE USE OF FOCUSED AEROSOL DEPOSITION (FAD) TO CAPTURE, IDENTIFY AND QUANTIFY KILLER DEFECT PARTICLES IN UPW

GARY VAN SCHOONEVELD¹, PAT KEADY², DAVID BLACKFORD³

CT ASSOCIATES, INC., EDEN PRAIRIE, MN 55344¹ AEROSOL DEVICES, INC., FORT COLLINS, CO 80525² KANOMAX FMT, WHITE BEAR LAKE, MN 55110³

Creative

Technology

CT Associates, Inc.

INTRODUCTION

- DETECTING, COLLECTING AND IDENTIFYING "KILLER" PARTICLES (< 20 NM) IN HIGH-PURITY LIQUIDS IS VERY CHALLENGING AND TIME CONSUMING.
- DEVICE GEOMETRIES AND FEATURE SIZES WILL CONTINUE TO PRESS THESE SIZES TOWARD 5 NM IN THE COMING YEARS.
- TRADITIONAL FILTER-BASED CAPTURE TECHNIQUES HAVE BOTH PORE-SIZE AND FLOWRATE LIMITATIONS, AND MAY TAKE WEEKS FOR ONE SAMPLE.
- NEW, FASTER METHODS FOR EFFICIENTLY COLLECTING PARTICLES AS SMALL AS 5 NM ARE NEEDED.
- THIS PRESENTATION WILL REVIEW THE ADVANCEMENTS MADE IN FOCUSED AEROSOL DEPOSITION AS A TOOL FOR CAPTURING LIQUID-BORNE NANOPARTICLES FOR OFF-LINE SIZING AND COMPOSITIONAL ANALYSIS BY ELECTRON MICROSCOPY (SEM AND TEM) AND ENERGY DISPERSIVE X-RAY (EDX)

PRESENTATION OUTLINE

- FOCUSED AEROSOL DEPOSITION (FAD) THEORY OF OPERATION
- FAD TECHNOLOGY DEVELOPMENTS AND CAPABILITIES
- TEST RESULTS AND POTENTIAL APPLICATIONS
- NEXT STEPS
- SUMMARY

THEORY OF OPERATION – NANOPARTICLE EXTRACTOR

5

ACTIVATION EFFICIENCY AND SIZE IMPLICATIONS

• Material Effects:

- Hydrophilic vs. hydrophobic particles
- Condensation Growth Tube:
 - Temperature, flowrate, bore size, gas
- Aerosol Concentration :

Parameter	< 1E4/cc	> 1E4/cc
Minimun activation size	Smaller (5nm)	Larger
Droplet size	Larger (3µm)	Smaller
Collection efficiency	Higher (>98%)	Lower
Media heating requirements	Lower (<40°C)	Higher

FAD Improvements

ORIGINAL -

deposition ~ 1mm diameter "spot" deposits into multiwell PEEK sample plates

Increased aerosol particle

nozzle and media.

ready stub.

concentration to collector 5-10X.

Reduced focus distance between

Optimized aerosol flow parameters.

Collection focused directly on SEM

Tighten aerosol focus nozzle.

NOW - focused deposition in the center of test silica wafers attached to 1" SEM stub on a 5-stub heated sample platen

Collection of atmospheric particles for visual illustration

FAD Improvements – Spot Size Reduction

Typical deposit spot - 2017

Typical FAD deposit - 2018

Spot Size Reduction Implications

99% reduction in spot size with a 5 to 10X increase in deposition rate.

	Minimum Particle Size (nm)	Inspection Area (mm ²)	Typical flow rate (mL/min)	Depostion Rate (mL/mm2)	Relative Sampling Time (to FAD)
FAD	5	0.01	0.003	0.3	1
Al ₂ O ₃ Filter	20*	346	37.3	0.11	2.8
Track Etch Filter	50	415	10.0	0.02	12.5

* 10 nm Al_2O_3 have been demonstrated but are not commercially available.

10

1mm ·

FAD Improvements – Direct Deposition on SEM-**Ready Stubs Two Deposition Media:** 25mm Silicon Wafer 10 25mm Polycarbonate Track Etch ٠ 5 SEM Y Position (mm) -5 **13 replicates** -10 5 -10 10 -5 0 SEM X Position (mm)

Depositing on SEM-ready stub with alignment pin provides the ability to rapidly locate spot and begin SEM/EDX analysis.

11

POTENTIAL APPLICATIONS

- UPW SYSTEM CONTAMINATION MAPPING
- FILTER RETENTION TESTING
- COMPONENT CONTAMINATION PROFILING
 - FILTER (MF AND UF) SHEDDING
 - IX RESIN RELEASE
 - MECHANICAL COMPONENTS (VALVES, REGULATOR, TUBING, ETC.)
 - MEMBRANE CONTACTORS
- PARTICLE MEASURING INSTRUMENT TO PARTICLE CORRELATIONS

Component Contamination Profiling – IX Resin Effluent

- Semiconductor grade virgin mixed IX resin.
- Triple rinsed in HDPE bottle in UPW.
- Agitated for 1 hour on rotary shaker table.
- Serial filtration with 100 and 20 nm Anodisk aluminum oxide filter.
- 1000:1 online dilution for 1.6 hours.

Profiling individual

contamination contributors will be beneficial in identifying or eliminating potential sources in the event of a contamination event.

17

NEXT STEPS

- CONTINUE TO IMPROVE SPOT LOCATION REPRODUCIBILITY.
- DEVELOP METHOD FOR TEM-READY DEPOSITION FOR SUB 10 NM ANALYSIS.
- IMPROVED NON-SILICON BASED DEPOSITION MEDIA TO ALLOW FOR BETTER SILICA IDENTIFICATION.
- DEVELOP QUANTIFICATION (COUNTING) METHODOLOGY.
- EVALUATE THE APPLICATION OF THE METHOD FOR FILTER TESTING (NOT NECESSARILY LIMITED TO PARTICLES).

SUMMARY

- FOCUSED AEROSOL DEPOSITION IS A POWERFUL NEW TOOL FOR VISIBILITY OF SUB-20NM UPW PARTICLE CONTAMINANTS.
- MADE SIGNIFICANT IMPROVEMENTS TO THE METHOD:
 - TIGHTLY FOCUSED AND CENTERED PARTICLE SAMPLE ON READY-TO-ANALYZE SEM SUBSTRATE.
 - FAST SAMPLE COLLECTION.
 - RAPID SPOT LOCATION AND RESTRICTED PROXIMITY FOR HIGH EFFICIENCY SEM/EDX ANALYSIS.
- PRELIMINARY DEMONSTRATION OF UPW SYSTEM MAPPING CAPABILITIES.
- POTENTIAL TO IMPROVE UPW PURITY IN MANY APPLICATIONS.

Van Schooneveld, et al., Focused Aerosol Deposition, Ultrapure Micro 2018, Austin, Texas

19

THANK YOU FOR YOUR ATTENTION!

