

International Conference on Planarization/CMP Technology Ambassador Hotel, Hsinchu, Taiwan September 15 (SUN)– September 18 (WED), 2019

Post CMP Clean Effluent Endpointing and Monitoring with the LNS System

Siqin He, Derek Oberreit, and Steve Kosier

Kanomax FMT, Inc., White Bear Lake, Minnesota, United States

CMP and Post CMP Clean

Chemical Mechanical Planarization (CMP)

- Widely used and accepted planarization method
- Consumes large quantity of slurry
- Introduces defects and contaminations that must be removed

Post CMP Cleaning

- Megasonic cleaning
- Brush scrubbing
- Fluid jet

A Kanomax Company

- Spin rinse dry

NANOPARTICLE MEASUREMENT SOLUTIONS

Most widely used

Post CMP Clean – Brush Scrubbing

Abrasive Particles

- Removal efficiency not linear with cleaning time
- Removal rate is size dependent

(Kim, H.J., Defects and Post CMP Cleaning, ICPT 2018)

Post CMP Clean – Endpointing

- Combined removal of chemical and physical cleaning
- Mixed effect of particle removal and cross contamination
- Size dependent removal characteristics
- Complex behavior that needs a better monitoring method

Particle Characterization – Size and Concentration

Dynamic light scattering

- Requires high concentrations
- Dependent on sample temperature and viscosity
- No concentration information
- Inconsistent multimodal performance
- Nanoparticle Tracking Analysis
 - Functional down to 20 nm
 - Dependent on sample temperature and viscosity
- Liquid Nanoparticle Sizing System (LNS)
 - Application to measurements at previously unattainable size thresholds

Dynamic Light Scattering Theory By Mike Jones - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10502233

Nanoparticle Tracking Analysis image By Thegnarlypanda - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11621345

Quantifying Particle Size Distribution in Liquid

- In situ optical techniques do not provide concentration information
- Microscopy methods are costly and time consuming
- Volume concentration standards provide method to calibrate the true aerosolization rate, $R_{Aerosol}$

 $\mathcal{V}_{Vol,Aerosol}\mathcal{Q}_{Aerosol}$ R_{Aerosol} ol .Hvdrosol

Liquid Nanoparticle Sizer (LNS) Advantages

- High sizing resolution comparing to other in-situ particle size distribution measurement techniques
- Reports absolute particle concentration information instead of relative signal intensity

LNS

Particle diameter (nm)

Reference: Litchy, M. et.al.: Pittcon 2012

LNS System with Patented Nebulizer Design

Post CMP Clean Effluent Monitoring with LNS

Experimental Setup

- Silicon wafer loaded with CMP slurry
- UPW flows toward the wafer surface to mimic a simplified post CMP clean process
- Real-time monitoring of the effluent by the LNS system using direct injection mode

Post CMP Clean Effluent Monitoring with LNS

Particle Size Distribution Mode

Post CMP Clean Effluent Monitoring with LNS

Cumulative Particle Number Concentration

Cumulative Number Concentration of Slurry Particles

LNS Results with Different Slurries

Cleaning rate varies with particle size

Number Weighted Colloid Particle Size Distribution

Zirconia

LNS Results with Different Slurries

• Cleaning rate varies with slurry type

Cleaning Rate for Different Slurries

LNS Single Channel Monitoring Mode

Particle count data reported at 1 Hz rate for the selected size channel

80nm Single Channel Monitoring

Summary

- The LNS system is a perfect fit for characterizing size distribution of particles in post CMP cleaning effluent with its high sizing resolution, absolute concentration measurement, fast-response, and online, real-time monitoring capability.
- The LNS system can be operated in:
 - 1) Size distribution mode
 - 2) Single channel mode
- Cleaning rate of slurry particles varies with particle size and slurry type.
- Complex CMP particle cleaning behavior can be understood and monitored using the LNS System.

International Conference on Planarization/CMP Technology

Ambassador Hotel, Hsinchu, Taiwan September 15 (SUN)– September 18 (WED), 2019

THANK YOU

For more technical details, please visit us at <u>www.KanomaxFMT.com</u> ContactUs@KanomaxFMT.com

