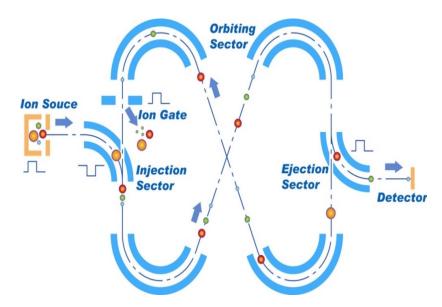
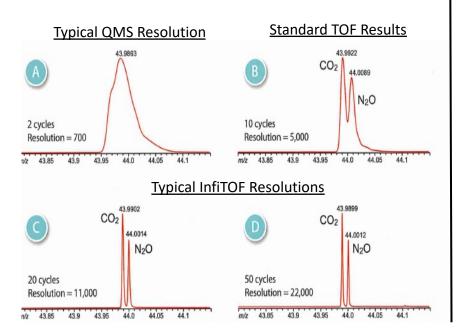
World Leader in Aerosol & Gas Metrology



Environment	* Measuring all green house gases simultaneously in real time * Complex samples from air, soil, and water
Energy	* Hydrogen and Helium isotopic differentiation * Chemical differentiation of petroleum and derivatives * Characterize combustion efficiency and byproducts
Pharmaceutical	* Measure active/inactive ingredients in complex formulations * Identify and quantify cannabinoids of interest
High Purity Process Gases	* Specialty Gases for Semiconductor / and other areas

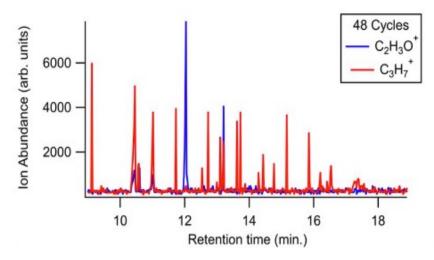
- Highest resolution with the smallest footprint
- Readily optimize sensitivity and resolution for any case
- Combine with GC or TGA to analyze complex samples
- Resolution: >30,000 (FWHM @m/z 28)
- Mass range: m/z 0.8-1,000 Ionization: EI



Environment

 Measure all green-house gases with high resolution in real time (CO²/N²O). Only one instrument is required to measure all greenhouse gases.

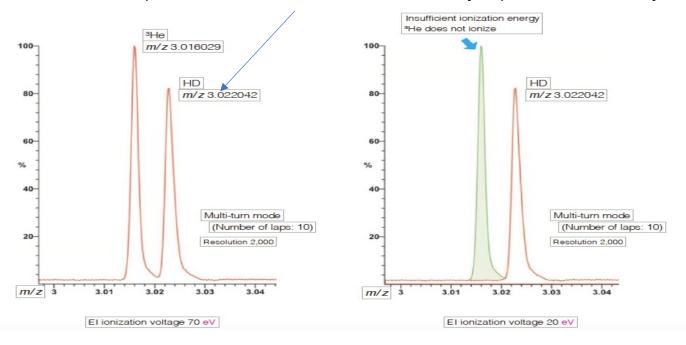
Example


 Increasing the number of cycles through the InfiTOF achieves resolution well beyond QMS or lower resolution TOF instruments.

Analysis of complex samples from air/soil/water

Example

- Aerosol sample, mixture of organic molecules present in atmospheric conditions (C2H3O and C3H7 are Acetyl and Isopropyl fragments).
- Data shown is pre-separated via GC.
- Advantage over standard to high-end TOF systems (2k 8K). InfiTOF has a maximum limit of 30k-but much more cost effective.

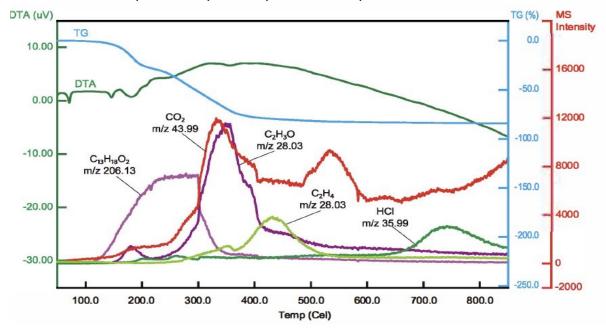


Energy

- Hydrogen and Helium isotopic differentiation
- · Chemical differentiation of petroleum and derivatives
- Characterize combustion efficiency and byproducts.

Example

• Helium-3 (³He) is an isotope that exists in the atmosphere at only one millionth of helium-4 (⁴He), and is used in nuclear fusion research and neutron detection. Hydrogen Deuterium (HD) is ¹H + ²H. The example below shows that HD can be distinctly separated from ³He by the InfiTOF.

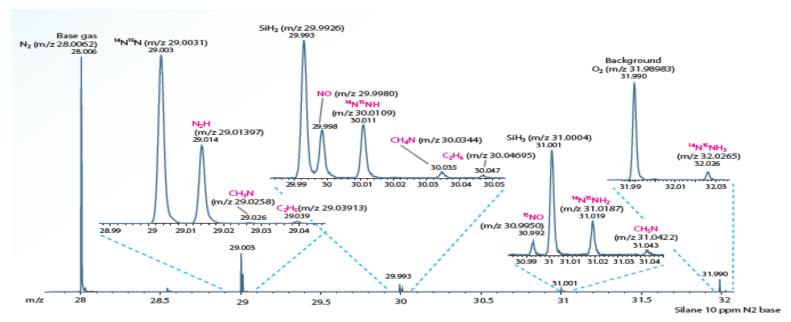


Pharmaceutical

- Measure active/inactive ingredients in complex formulations
- · Identify and quantify cannabinoids of interest
- Other

Example

• TG/DTA analysis is used to confirm the thermal stability of the pharmaceuticals for safety reasons, and also as a qualitative analysis of the generated components. The below illustration shows how the InfiTOF can be used to confirm the presence and quantity of Caffeine (C⁸H¹⁰N⁴O²)--identified by fragments at (55,82,108,and 194) and Ibuprofen (C13H18O2).



High Purity Process Gases (Semiconductor, other)

- Quality control for high purity gas providers used in semiconductor production, and other applications.
- Real-time 24/7 monitoring system.
- Advantages over Cavity Ring Down (CRDS) systems which require a unique laser / molecule. InfiTOF has super high
 resolution across a large mass range to detect any contamination that is present.

Example

 Silane (SiH⁴⁾ is used for polycrystalline deposition of interconnects or masking growth of epitaxial silicon. The InfiTOF detects Silane as a combination of SiH3 and SiH2. With lower resolution TOF, both SiH3 and SiH2 would not separate Silane from the contaminants. Ideally only N2 and SiH2/SiH3 should be present, but the higher resolution of the InfiTOF reveals many other contaminants (shown in pink).

